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Abstract

The de®nition and interpretation of average pressure in an incompressible disperse two-phase ¯ow are
ambiguous and have been the object of debate in the literature. For example, the physical meaning of
de®nitions involving an internal `pressure' inside rigid particles is unclear. The appearance of the particle
internal stresses in averaged equations of the two-¯uid types is similarly puzzling as, provided the
particles are su�ciently rigid, the precise numerical value of such stresses would not be expected to
a�ect the ¯ow. This paper deals with these matters using a new approach. A proper de®nition of
mixture pressure follows quite naturally by identifying the isotropic component of the mixture stress
that Ð just like the usual pressure in incompressible single-phase ¯ow Ð is covariant under the gauge
transformation p4p� c, where c can be thought of as the potential of body forces. This
transformation includes as special cases the more usual gauge transformation p4p�P�t�, with P�t� an
arbitrary function of time, and p4pÿ rg � x, by which gravitational e�ects are removed from the single-
phase equations. The mixture pressure that is identi®ed on the basis of this argument contains the
pressure averaged over the surface of the particles, as in some earlier proposals, but also other terms.
Explicit examples are given for the case of dilute potential and Stokes ¯ows of spheres. It is also shown
that it is possible to completely eliminate the disperse-phase stress ®eld from the averaged equations
provided the particle motion is only expressed in terms of the center-of-mass and angular velocity.
Finally, the implications for the closure of the averaged equations that derive from the concept of
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1. Introduction

Consider a disperse two-phase ¯ow consisting of drops or bubbles suspended in a continuous
phase. If one wanted to de®ne an average pressure in the mixture, the obvious choice would be
the sum of the pressures in the two phases, each weighted according to its local volume
fraction. Indeed, most averaging methods would lead to such a result. Let now the disperse
phase become gradually more viscous, e.g., by decreasing the temperature. As long as it
remained a ¯uid Ð however viscous Ð its internal pressure would be well de®ned and this
de®nition of average pressure would be meaningful. However, when the viscosity is large
enough, the behavior of the drops would be indistinguishable from that of rigid particles and
yet, although the average ¯ow would be exactly the same in the two cases, the concept of
`pressure' inside a rigid particle would be devoid of physical meaning.

Consider now the averaged momentum equation for the disperse phase. Again, as long as
this phase consists of a ¯uid, most averaging methods would lead to a term involving the
pressure gradient of the disperse phase. If the disperse phase were to become more and more
viscous, however, we would encounter the same conceptual di�culty as before.

These are just two manifestations of the paradox associated with the understanding of
disperse-phase pressure and mixture pressure in disperse two-phase ¯ow, a situation that has
spawned a considerable literature (see, e.g., BoureÂ , 1979; Prosperetti and Jones, 1984; Givler,
1993; Hwang and Shen, 1989; Joseph and Lundgren, 1990; Drew and Lahey, 1993).

Several authors avoid the introduction of a disperse-phase pressure and replace it by an
`interfacial pressure', related to the mean continuous-phase pressure in the neighborhood of the
particles (see, e.g., Anderson and Jackson, 1967; Ishii, 1975; Drew, 1983; Prosperetti and Jones,
1984; Arnold et al., 1989). It will be shown that this concept is a good approximation to the
complete solution to the problem that emerges from our study.

The problem associated with the concept of mixture pressure is of course intimately related
to that of mixture stress. Here, again, the formal application of straightforward averaging
causes the stress inside the particles to appear. To deal with the case of rigid particles, in
principle one could start with the equations of elasticity inside the particles and consider the
limit as the elastic modulus becomes larger and larger (Drew and Lahey, 1993). This is
certainly an interesting approach but, provided the particles are su�ciently rigid, the precise
numerical value of the stresses would not be expected to signi®cantly a�ect the ¯ow and one
would think that a simpler approach would be adequate (Prosperetti and Zhang, 1996).

The purpose of the present paper is to present a uni®ed discussion of these matters and o�er
a hopefully satisfactory resolution of the di�culties associated with them. At the same time, we
discuss several aspects of the averaged momentum equations, particularly in the all-important
case of spatially non-uniform systems, and show how a conceptually complete theory can be
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formulated without any reference to the particles' internal structure provided they are
su�ciently sti� that they can be modeled as rigid. In this description the particle motion is
characterized only in terms of the center-of-mass velocity and angular velocity.
Our starting point is the simple observation that a conservative body force characterized by

a potential c can be eliminated from the exact microscopic equations for an incompressible
¯uid by subjecting the pressure to the gauge transformation (see, e.g., Batchelor, 1967)

p4p� c: �1�
We propose to de®ne the mixture pressure as that part of the total stress in the mixture that
transforms as in Eq. (1). It will be shown that this prescription leads to a unique result that is
related to (but not identical with) earlier proposals in the literature and has the correct form in
the case of dilute suspensions both at small and large particle Reynolds numbers. Sometimes,
in Continuum Mechanics, pressure is related to the trace of the stress. We discuss this matter
in Section 7 and point out the di�culties associated with it.
The problem that we discuss is also of great importance for the closure of averaged

equations models and, indeed, we have been led to its consideration by our study of the
closure problem (Marchioro et al., 1999a, 1999b). The point is that, in a two-¯uid averaged
equations model, the mixture pressure is part of the primary unknowns and can in principle be
found by solving the equations. Closure relations must be provided, on the other hand, for the
remaining part of the stress. It is therefore evident that the lack of a correct de®nition for the
mixture pressure introduces serious uncertainties for the development of closure relations.
While a detailed understanding of the present paper requires some material from our earlier

studies (Zhang and Prosperetti, 1994a, 1997; Prosperetti, 1998), the line of the argument can be
followed also without such specialized knowledge. Therefore, in order to get as directly as
possible to the results, we summarize the relevant background material in Appendix A giving
references to the appropriate equations along the way. The averaged continuity equations have
the standard form and are given explicitly in Eqs. (A11) and (A12) of Appendix A. We focus
on the momentum equations.
The considerations and explicit results that follow refer to a suspension of equal spherical

particles in an incompressible ¯uid. Extensions to unequal, or non-spherical, particles are
conceptually straightforward, but would result in more cumbersome expressions.

2. Momentum balance

We write the microscopic momentum equation for the continuous phase (index C) in the
form

rC

�
@uC

@t
� r � �uCuC�

�
� r � sssC ÿ rcC, �2�

where uC is the velocity, rC the density, sssC the stress, and cC the potential of the body force.
In the case of gravity with an acceleration g, for example, we would have cC � ÿrCg � x. We
shall only consider the case in which cC is a prescribed ®eld of force, not in¯uenced by the
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¯ow itself.2 Thus, the force ®eld has no sources in the volume occupied by the ¯uid with the
consequence that cC is harmonic. Note explicitly that we do not make any assumption as to
the constitutive relation of sssC. The results that follow are applicable to both Newtonian and
non-Newtonian ¯uids.
Upon taking the phase ensemble average of (2) according to the rules summarized in the

Appendix we ®nd

IC � bChr � sssCi ÿ bCrcC, �3�

where angle brackets denote the phase-ensemble average, bC is the volume fraction of the
continuous phase, and we denote the inertia terms in the left-hand side by IC for brevity:

IC � rC

@

@t

ÿ
bChuCi

�� rCr �
ÿ
bChuCuCi

�
; �4�

here and throughout the paper we assume both phases to be incompressible.
At this point one faces the well-known problem that di�erentiation and averaging do not

commute. Indeed, according to the relations developed in Zhang and Prosperetti (1994a, 1997),
(see also Prosperetti, 1998), one has

bChr � sssCi � r �
ÿ
bChsssCi

�ÿ �
jxÿyj�a

dSyP�y�hsssCi1�xjy� � ny, �5�

where P(y) is the single-particle probability density de®ned in Eq. (A7) and hsssCi1�xjy� is the
stress at x averaged conditionally (see the de®nition (A8)) to the presence of a particle with
center at y. For brevity, here and in the following, we omit the explicit indication of all non-
essential variables such as time, and leave some of the integrations over the probability
variables implicit. For example, if integration over the velocity variable were explicitly
indicated, Eq. (5) would take on the form given in Eq. (A16) of Appendix A.
The integral in Eq. (5) is e�ected over the centers of all the spherical particles at a distance

equal to the radius a from the ®eld point x under consideration. As explained in our earlier
papers, we can put Eq. (5) in a more convenient form by carrying out a procedure we refer to
as small-particle approximation. The idea is that the spatial scales over which hsssCi1�xjy� varies
with respect to the arguments x and y are very di�erent. Near the particle, the scale of
variation with respect to the variable x is comparable to Ð or even smaller than Ð the
particle radius a. On the other hand, the scale of variation with respect to the position y of the
particle center, with jxÿ yj � a ®xed, is of the order of the macroscopic length scale L which,
in the bulk of the suspension, is normally much greater than a. The scale of variation of the
single-particle probability distribution P(y) is also the macroscopic length scale. By exploiting
this idea in the manner described in Appendix B, we ®nd

bChr � sssCi � r �
ÿ
bChsssCi

�ÿ nA�sssC � � r �
ÿ
bDL�sssC �

�
, �6�

2 A counter-example would be the self-gravitational ®eld in the interior of a celestial body or the electric ®eld in a
plasma.
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where n is the particle number density de®ned in Eq. (A5) and

bDL�sssC � � nT�sssC � � r �
�
nS�sssC � � r �

�
nR�sssC � � � � �

�	
, �7�

with

A�sssC ��x� �
�
jrj�a

dSrsssC�x� rjx,Nÿ 1� � n, �8�

T�sssC ��x� � a

�
jrj�a

dSrn
�
sssC�x� rjx,Nÿ 1� � n�, �9�

S�sssC ��x� � ÿ1
2
a2
�
jrj�a

dSrnn
�
sssC�x� rjx,Nÿ 1� � n�, �10�

R�sssC ��x� � 1

6
a3
�
jrj�a

dSrnnn
�
sssC�x� rjx,Nÿ 1� � n�: �11�

Here the overline denotes the particle average de®ned in Eq. (A9), i.e., the ensemble average
over all the con®gurations such that one of the particles has center at x; the integration is over
the surface of that particle. The terms neglected in Eq. (7) are of higher order in a=L. One
recognizes that, in particular, A is the average hydrodynamic force on the particles with
centers contained in the unit volume. Approximately, the particle number density is related to
the disperse-phase volume fraction bD by

bD �
�
1� a2

10
r2 � � � �

�
�nv�, �12�

where v � 4
3pa

3 is the volume of each particle and the omitted terms are o�a=L�2. Note that
bD � nv only when the particle distribution is spatially uniform. With Eq. (6) the averaged
momentum equation (3) becomes

IC � r �
ÿ
bChsssCi � bDL�sssC �

�ÿ nA�sssC � ÿ bCrcC: �13�
For the disperse phase we write the microscopic equation of motion as

rDaD � r � sssD ÿ rcD, �14�
where aD and rD are the acceleration and density of the particle material, sssD is the stress
tensor, and cD is the potential of the body force, also taken to be harmonic. We take the
phase average and ®nd

ID � bDhr � sssDi ÿ bDrcD, �15�
where ID denotes the inertia terms and is de®ned as in Eq. (4). As shown in Appendix B, for
the disperse phase one can develop a small-particle approximation analogous to Eq. (6), which
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puts the equation in the form

ID � nAD�sssC � � r � SSSa ÿ bDrcD, �16�
where AD is de®ned by

AD�sssD ��x� �
�
jrj�a

dSrsssD�x� rjx,Nÿ 1� � n: �17�

Since, at the particle surface,

sssC � n � sssD � n, �18�
we recognize that AD �A. The stress SSSa is conceptually similar to L; its explicit expression is

SSSa � ÿn�x�
�
jrjRa

d3r rhrr � sssDi1�x� rjx� � 1

2
r �

�
n�x�

�
jrjRa

d3r

rrhrrsssDi1�x� rjx�
�
� � � �

�19�

In this relation hrr � sssDi1�x � rjx� is the ensemble average of rr � sssD calculated with one
particle ®xed at x; a precise de®nition is given in Eq. (A8).
Upon adding the two averaged equations (13) and (16), we ®nd the total mixture momentum

balance in the form

IC � ID � r �
ÿ
bChsssCi � bDL�sssC � � SSSa

�ÿ bCrcC ÿ bDrcD: �20�
This expression conforms to the expectation that, aside from the body forces, the only source
of momentum for the mixture can be written as the divergence of a tensor, which expresses the
fact that a volume element interacts with its surroundings only through surface forces. The
tensor under the divergence sign may be identi®ed with the total mixture stress SSST:

SSST � bChsssCi � bDL�sssC � � SSSa: �21�
In view of the following developments, it is important to note that, both from the manner of
its derivation and from the way it appears in Eq. (20), the tensor SSST is only de®ned up to a
divergenceless term.

3. Comparison with other forms of the momentum equations

Before proceeding, it may be useful to establish explicitly the connection between the two
averaged momentum equations (13) and (16) and the standard form of the momentum
equations in the so-called two-¯uid model. In addition to demonstrating the substantial
identity of the two formulations, this analysis leads to some insight into the nature of the
interphase forces.
In the two-¯uid model the momentum equations are usually written as
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IC � bCr � SC ÿ Fÿ bCrcC, �22�

ID � bDr � SD � Fÿ bDrcD, �23�
where SC,D are suitable stresses and the phase-interaction force F appears with opposite signs in
the two equations so as to explicitly satisfy the action±reaction principle. Upon adding these
two equations the result is compatible with Eq. (20) only if

bCr � SC � bDr � SD � r � SSST, �24�
which, using bC � 1ÿ bD, may be rewritten as

bDr � �SD ÿ SC� � r � �SSST ÿ SC�: �25�
This equation must express a formal identity and not a physical law, in the sense that it must
be satis®ed identically independently of any speci®c ¯ow. This requires that the left-hand side
be also expressible as a divergence, which is only possible if the di�erence SD ÿ SC is a function
of bD only. If this were so, in a system at rest and not subject to forces, one would have a
di�erence between the phase stresses only due to the distribution of the particles, which is
physically unreasonable. We thus conclude that

SC � SD � SSST, �26�
possibly up to a divergenceless tensor that, as already noted, has no physical consequences.
Upon substituting into Eq. (22) or (23) and comparing with Eq. (13) or (16) we then have

F � nAÿ bDr � SSST � r � SSSa: �27�
Upon extracting the term SSSa from SSST, it readily follows from this relation that Fÿ bCr � SSSa is
independent of the particle stress.
With the previous results (26) and (27), the two momentum equations (22) and (23) take on

the symmetric forms

IC � bCr � SSST ÿ Fÿ bCrcC, �28�

ID � bDr � SSST � Fÿ bDrcD: �29�
It is interesting to note that, given that bCr � SSSa ÿ F is independent of SSSa, the continuous-phase
momentum equation does not explicitly depend on the inner particle dynamics as expected.

4. Gauge transformation

It is a fundamental property of the momentum equation of an incompressible ¯uid that an
external body force can be removed by a gauge transformation of the isotropic part of the
stress. If we let

ÃsssC � sssC ÿ cI, �30�
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where I is the identity two-tensor and c a harmonic function, the momentum equation (2)
becomes:

rC

�
@uC

@t
� r � �uCuC�

�
� r � ÃsssC ÿ r

ÿ
cC ÿ c

�
: �31�

In particular, if c � cC, the e�ect of the body force is removed from the continuous phase.
This simple property embodies the fundamental physical fact that an incompressible ¯uid
responds to pressure gradients, without distinguishing between those due to a body force or
other agents. Upon de®ning

ÃsssD � sssD ÿ cI, �32�
the microscopic disperse phase momentum equation can also be brought to a similar form.
Note that the same condition (18) on the normal stresses at the particle surfaces is satis®ed by
ÃsssC and ÃsssD.
We wish to break up the total mixture stress (21) into a component to be identi®ed with the

mixture pressure pm and a component, SSS, due to viscous forces:

SSST � ÿpmI� SSS: �33�
As a guide to the correct way by which to e�ect this decomposition, it seems natural to require
that the fundamental gauge transformation property of the single-phase pressure be enjoyed
also by pm. This condition is consistent with the point of view of the two-¯uid model according
to which the two phases are to be considered as two interpenetrating ¯uid continua. We thus
seek the part of SSST that transforms according to

ÃSSST � ST ÿ cI, �34�
so that, upon carrying out the gauge transformation, the total momentum equation (20) becomes

IC � ID � r �
ÿÿ p̂m � SSS

�ÿ bCr
ÿ
cC ÿ c

�ÿ bDr
ÿ
cD ÿ c

�
: �35�

Note that here we write SSS rather than ÃSSS as one would expect the viscous part of the stress to be
una�ected by the transformation, precisely as in the case of a single-phase incompressible ¯uid.
It is easy to show from the de®nition (19) of SSSa, the transformation relation (42), and the

fact that c is harmonic, that

ÃSSS a � SSSa � va2

10

�
n@ i@ jcÿ

ÿ
@ jn
��@ ic��ÿ va4

70
�@kn�

ÿ
@k@ j@ ic

�� � � � �36�

from which

r �
ÿ
SSSa ÿ ÃSSSa

�
� ÿbD ÿ nv

�rc� higher order terms: �37�

(Both of these relations exhibit error terms because SSSa is de®ned by a perturbation expansion.)
Furthermore, from its de®nition (8), we ®nd that A transforms according to
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Â �Aÿ vrc: �38�
With these relations the continuous-phase average momentum equation (13) is readily found to
become

IC � r �
ÿ

ÃSSST ÿ ÃSSS a

�
ÿ nÂÿ bCr

ÿ
cC ÿ c

�
, �39�

while the disperse-phase equation (16) transforms to

ID � nÂ�r � ÃSSSa ÿ bDr
ÿ
cD ÿ c

�
: �40�

As an example one may consider the case of gravity for which cC,D � ÿrC,Dg � x. If one were
to take c � cC, one would remove the body force from both the microscopic and the average
continuous phase momentum equations, while the disperse-phase equation would acquire a
term bD�rD ÿ rC�g, i.e., the Archimedean force.
In the following it is not necessary to commit oneself to a speci®c choice for c although, in

many practical cases, c � cC would be the physically signi®cant gauge transformation.
Before concluding this section it is useful to derive a few other relations concerning the

gauge transformation properties of some other quantities involved in the theory.
Averaging and the small-particle approximation (6) applied to (31) give

IC � r �
�
bCh ÃsssCi � bDL̂

�
ÿ nÂÿ bCr

ÿ
cC ÿ c

�
: �41�

Upon subtracting from the untransformed momentum equation (13) and using Eqs. (30) and
(38) one readily ®nds that

r � ÿbDL
� � r � �bDL̂

�
� crbD � nvrc � r �

�
bDL̂� bDc

�
ÿ ÿbD ÿ nv

�rc, �42�

which can be proved directly from the de®nition of the various quantities involved provided
terms of higher order than those retained in L are consistently discarded. Upon applying the
gauge transformation to the interphase force F de®ned in Eq. (27) we then ®nd

F � nÂÿ bDr �
�
bCh ÃsssCi � bDL̂� ÃSSS a

�
� bC

h
r �

ÿ
SSSa ÿ ÃSSSa

�
� ÿnvÿ bD

�rci, �43�

or, from Eq. (37), ÃF � F. We thus conclude that F is gauge invariant, as one would expect
from a quantity to be identi®ed with the interphase force.3

5. The mixture pressure

Eq. (36) shows that the transformation property of SSSa does not include a scalar. Therefore,

3 Sometimes the added mass force is expressed in terms of a pressure gradient, but this form is only found upon
using the liquid momentum equation to eliminate the acceleration. If the force is expressed in terms of the liquid
acceleration, gauge invariance is manifest.
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in order to achieve the transformation property (34) of SSST, it is su�cient to focus on the
continuous phase stress bChsssCi � bDL. The transformation property of the ®rst term is simply

bCh ÃsssCi � bChsssCi ÿ bCcI: �44�
The crucial term is the second one, bDL. Since bDL is given in Eq. (7) as a perturbation
series, we examine the individual terms one by one. At each step we separate the part of the
term considered which, upon e�ecting the gauge transformation, is not capable of giving an
isotropic contribution to SSST. It will be easy to ®nd the correct form of pm by inspecting the
remaining parts.

5.1. The transformation of T

Using the result, valid for a harmonic function,

a

�
jrj�a

dSrnnc � v

�
I� a2

5
rr

�
c, �45�

it is a simple matter to ®nd

T � T̂� vIc� a2

5
vrrc �46�

Since r2c � 0, we also have

TrT � Tr T̂� 3vc: �47�
Therefore, we write

T �T0 � 1

3
I Tr T, �48�

where the last term is clearly isotropic. The new quantity T0 transforms according to

T0 � T̂
0 � a2

5
vrrc, �49�

and, since it does not contain an isotropic part, it cannot contribute to pm. From the de®nition
(9) of T, in terms of particle averages we have

T0 � a

�
jrj�a

dSr

�
n�sssC � n� ÿ 1

3
I�n � sssC � n�

�
: �50�

It is readily checked that the symmetric part of T0 is just the stresslet, or force dipole:

tsij �
1

2

�
T0

ij �T0
ji

�
�
�
jrj�a

dSr

�
1

2

ÿ
ri�sssC�jk�rj�sssC�ik

�ÿ 1

3
dij�r � sssC�k

�
nk, �51�

while the antisymmetric part is the rotlet:
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taij �
1

2

�
T0

ij ÿT0
ji

�
� Eijk

 
1

2

�
jrj�a

dSr�sssC � n� � r

!
k

: �52�

5.2. The transformation of S

With the result�
jrj�a

dSrninjnkc � v

5

�
dijkl@ lc� a2

7
@ i@ j@kc

�
, �53�

where

dijkl � dijdkl � dikdjl � dildjk �54�

is the fourth-order completely symmetric tensor, we readily ®nd

S � Ŝÿ va2

10

�
dijkl@ lc� a2

7
@ i@ j@kc

�
: �55�

Since S enters the stress as a divergence, the ®rst term in parentheses can give an isotropic
contribution and must be removed. For this purpose we note that, from Eq. (38), A exhibits
the correct transformation properties and we therefore set

S0 �S� a2

10
dijklAl, �56�

from which

S0 � Ŝ
0 ÿ a4

70
@ i@ j@kc: �57�

In terms of particle averages

S0
kji � ÿ

1

2
a2
�
jrj�a

dSr

�
nknj�sssC � n�iÿ

1

5

ÿ
dij�n � sssC�k�dkj�n � sssC�i�dki�n � sssC�j

��
: �58�

As before, we can decompose S0
kji into a traceless symmetric part, an antisymmetric part, and

an isotropic part:

ss
kji �

1

2

�
S0

kji �S0
kij

�
ÿ 1

3
dijS0

kmm, �59�

sa
kji �

1

2

�
S0

kji ÿS0
kij

�
� Eijm

 
1

4

�
jrj�a

dSrrk
��sssC � n� � r

�
m

!
, �60�
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si
kmm �

1

3
S0

kmm � ÿ
1

2

�
jrj�a

dSr

h
rk�r � sssC � n� ÿ a2�sssC � n�k

i
: �61�

5.3. The transformation of R

To proceed similarly with R we need the result, valid for a harmonic c,

a

�
jrj�a

dSrninjnknlc � 1

5
v

�
dijklc� a2

14
dijklpq@p@qc� a4

63
@ i@ j@k@ lc

�
, �62�

where dijkl is de®ned in Eq. (54) and dijklpq is the analogous sixth-order tensor. We therefore
have

Rlkji � R̂lkji � a2v

30

�
dijklc� a2

14
dijklpq@p@qc� a4

63
@ i@ j@k@ lc

�
: �63�

From Eq. (47) we see that the ®rst term in parentheses transforms like Tr T while, from Eq.
(49), the second term transforms like T0. We therefore de®ne

Rlkji � R0
lkji �

a2

84
dijklpqT0

pq �
a2

90
dijklTr T, �64�

and note that

R0
lkji � R̂

0

lkji �
a6v

1890
@ i@ j@k@ lc: �65�

An expression for R0 in terms of particle averages is readily written down from Eqs. (9) and
(11) but, since it is somewhat complicated, we do not show it.
The decomposition into a traceless symmetric part, an antisymmetric part, and an isotropic

part is now

rs
lkji �

1

2

�
R0

lkji �R0
lkij

�
ÿ 1

3
dijR0

lkmm, �66�

ra
lkji �

1

2

�
R0

lkji ÿR0
lkij

�
� Eijm

 
1

12

�
jrj�a

dSrrlrk
��sssC � n� � r

�
m

!
: �67�

ri
lkmm �

1

3
R0

lkmm �
1

18

"�
jrj�a

dSrrlrk�r � sssC � n� ÿ a2tslk ÿ
a2

3
dlk Tr T

#
�68�

5.4. Final form of the stress

From Eqs. (6) and (7) we see that, ultimately, it is @ j@kSkji and @ j@ l@kRlkji that enter in the
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momentum equation, rather than S, R themselves. We are thus at liberty to add a
divergenceless tensor to bDL without a�ecting the physics. With an eye to the symmetry
properties of the ®nal result it proves convenient to add

a2

10

ÿ
djki ÿ dijk

��nAk� � a2

45

ÿ
@ i@ j ÿ dijr2

��n Tr T� � a2

42

nÿ
@ j@k ÿ djkr2

��
n
ÿ
T0

ik �T0
ki

��
� ÿdjl@ i ÿ dij@ l

�
@k
�
n
ÿ
T0

kl �T0
lk

��o
, �69�

with which we ®nd

bDL � dij

�
1

3

�
1� a2

10
r2

�
�n Tr T� ÿ a2

5
@k�nAk� � a2

14
@k@ l

ÿ
nT0

kl

��

�n
�
T0

ij ÿ
a2

10

ÿ
@ jAi � @ iAj

��� a2

28
r2
h
n
�
T0

ij �T0
ji

�i

�@k
h
nS0

kji � @ l
�
nR0

lkji

�
� � � �

i
� a2

10

�
n@ iAj ÿAi

ÿ
@ jn
��
, �70�

where the terms that have been dropped are of formal order �a=L�3 and, therefore, of the same
order as those dropped in the de®nition (7) of L.
By means of Eqs. (47) and (38), and (48) it is readily veri®ed that the quantity in brackets in

the ®rst line transforms according to

� � � � �4� � � � � � bDcÿ
va4

70
@k@ l�n@k@ lc�: �71�

The last term is of formal order �a=L�4 and, therefore, is consistently negligible to the present
order of approximation. With the transformation property (44) of hsssCi, we may thus conclude
that

bChsssCi �
�
1

3

�
1� a2

10
r2

�
�n Tr T� ÿ a2

5
@k�nAk� � a2

14
@k@ l

ÿ
nT0

kl

��
I, �72�

transforms precisely as required by Eq. (34). This cannot yet be identi®ed with the mixture
pressure as it contains viscous contributions that should be removed. From the de®nitions (8)
and (9), and writing the isotropic part of sssC as ÿpC, the pressure part is found to be

pm � bChpCi �
�
1� a2

10
r2

�ÿ
nv �pe

�� a2

5
r �

 
n

�
jrj�a

dSr� ÿ pC�n
!

� a2

14
rr:

"
n

�
jrj�a

dSr

�
nnÿ 1

3
I

�
pC

#
, �73�
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where pe is the surface-average of the continuous-phase pressure over the particle surface:

pe � 1

4pa2

�
jrj�a

dSrpC: �74�

Eq. (73) is the major result of this paper. We present a discussion in Section 6 and some
examples in Section 8.
Returning to Eq. (70) we now identify, from the remaining terms, the invariant part that will

contribute to the mixture viscous stress SSS. It is easy to show that the four terms following the
isotropic one are individually invariant up to O�a=L�3 included. Of all the terms in Eq. (70),
therefore, only the two in the last line are not invariant. Combining with the nA in Eq. (13)
we ®nd

ÿnAi � @ j
�
a2

10

ÿ
n@ iAj ÿ

ÿ
@ jn
�
Ai

�� � ÿbD

v
Ai � a2

10

��rn� � �r �A� � nr�r �A�
�
i

� ÿbD

v
Âi � a2

10

�
r �

ÿ
nr � Â

�
� nr2Â

�
iÿbDrc, �75�

which, together with the term ÿrc arising from the transformation of pm, is readily seen to be
consistent with Eq. (39).
The invariant part of the stress (70) can be decomposed into a traceless symmetric

component S, an antisymmetric component A, and an isotropic component ÿ�pm � qm�I. In
terms of the force multipoles de®ned before the symmetric part may be written as

S � bC�hsssCi � hpCiI� �
�
1� a2

14
r2

�
�nts� � r � �nss� � rr:�nrs�

ÿa2

10
n

�
rA� �rA�Tÿ2

3
I�r �A�

�
, �76�

where the superscript T denotes the transpose. The antisymmetric part may be written as

Aji � EijkRk, �77�
where the pseudo-vector R is de®ned by

R � 1

2

"
n

�
jrj�a

dSr�sssC � n� � rÿ 1

2
r �

 
n

�
jrj�a

dSrr
��sssC � n� � r

�!

� 1

6
rr:

 
n

�
jrj�a

dSrrr
��sssC � n� � r

�!#
: �78�

Aside from the factor 1
2n, the ®rst term is just the average couple acting on the particles and is

the dominant contribution to the antisymmetric part of the stress. With no inertia and without
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an external couple applied to the particles it would evidently vanish. But it is interesting to
note that, even in these conditions, in general the stress contains a weak antisymmetric
component of order (a2=L2) that would, however, vanish in the case of a spatially uniform
system.
Finally, the isotropic part of the viscous stress is

qm � a2

5
@k
ÿ
nA�k

�ÿ a2

14
@k@ l

ÿ
ntskl

��� 1

15
a2nr �Aÿ @k

ÿ
nsi

kmm

�ÿ @ l@kÿnri
lkmm

�
, �79�

where we write A�, �ts�� to denote the parts of A, ts arising from the viscous stresses. We may
thus write

r � ÿbChsssCi � bDL
�ÿ nA � r � �ÿ �pm � qm�I� S� A

�
ÿbD

v
A� a2

10

��rn� � �r �A� � nr�r �A�
�
: �80�

Upon substituting Eq. (80) into Eq. (28), the complete viscous part of the stress de®ned in Eq.
(33) is therefore found to be

SSSji � ÿqmdji � Sji � Aji � a2

10

ÿ
n@ iAj ÿAi@ jn

�� �SSSa�ji, �81�

which, by Eqs. (38) and (36), is readily seen to be invariant under a gauge transformation to
order �a=L�4.

6. Discussion

In the previous section we have been led to de®ne the mixture pressure as in Eq. (73):

pm � bChpCi �
�
1� a2

10
r2

�ÿ
nv �pe

�� a2

5
r �

 
n

�
jrj�a

dSr� ÿ pC�n
!

� a2

14
rr:

"
n

�
jrj�a

dSr

�
nnÿ 1

3
I

�
pC

#
: �82�

In the case of a mixture in equilibrium at rest pe � pC � hpCi, all derivatives vanish and pm �
hpCi as expected. For a ¯owing uniform mixture, while �pe 6� hpCi in general, all derivatives
vanish so that

pm � bChpCi � nv �pe, �83�
or, since in this case from Eq. (12) bD � nv,

pm � bChpCi � bD �pe: �84�
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Formal averaging procedures often lead to a mixture pressure de®ned by

pm � bChpCi � bDhpDi, �85�
where the physical meaning of hpDi may not be entirely clear unless the disperse phase is a
¯uid, as discussed in Section 1. The result (84) gives to this quantity a well-de®ned meaning in
all cases. As a matter of fact, the analysis of Drew and Lahey (1993) based on elasticity theory
for the uniform case shows that the isotropic part of hsssDi is precisely equal to �p e.
If the ®nite extent of the particles is negligible, a ' 0, v ' 0, bC ' 1 and Eq. (82) gives

pm ' hpCi, �86�
which is also expected.
Suppose, again, that the di�erentiated terms in Eq. (82) are negligible. In this case, the

continuous-phase momentum equation (28) may be written as

IC � bCr � � ÿ hpCiI� SSS� ÿ ÿ �p e ÿ hpCi
�rbD ÿ FC ÿ bCrcC, �87�

where

FC � nAÿ bDr �
ÿÿ �peI� SSS

�� r � SSSa, �88�
may be considered the force exerted by the disperse on the continuous phase. The
corresponding form of the disperse-phase equation would then be

ID � bDr � � ÿ hpCiI� SSS� � FD ÿ bCrcC, �89�
with

FD � nAÿ bDr � � ÿ hpCiI� SSS� � r � SSSa: �90�
The equations are now written in terms of hpCi rather than pm, but this form requires a closure
to express �pe in terms of hpCi.
It may also be noted that, again dropping the di�erentiated terms in Eq. (82),

rpm � bCrhpCi �
ÿ

�pe ÿ hpCi
�rbD � bDr �pe: �91�

The ®rst two terms in the right-hand side appear in many averaged equations formulations
(see, e.g., Ishii, 1975; Park et al., 1998). The last term was introduced in Prosperetti and Jones
(1984) on the basis of a less rigorous argument than that leading to the more precise result
(82).
All of the above considerations ignore the di�erentiated terms in Eq. (82). These may be

viewed as corrections of progressively higher order in the ratio a=L of the particle radius to the
macroscopic length L and may therefore be small in many cases. The form (84) would then be
a good approximation to the mixture pressure.
Finally, since some steps of the derivation presented in the previous section are a matter of

choice, it is appropriate to discuss to what extent the results are unique.
Uniqueness of the expression (82) for the pressure can be proven rather simply by following

the same procedure as in the previous section but focusing exclusively on the pressure part of
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the stress (21) rather than carrying at the same time pressure and viscous components. Given
Eqs. (45), (53) and (62), the calculation is straightforward and we omit the details.
The grouping of the remaining terms into symmetric, antisymmetric, and isotropic parts,

however, is not unique. For example, on the basis of the identity

�rn� � �r �A� � nr�r �A� � r � �nr �A� � nr2A, �92�
it would be possible to rede®ne R in the antisymmetric part of the stress as

R 0 � R� 1

10
a2nr �A: �93�

In this case, the terms in the last line of Eq. (80) become

ÿbD

v
A� a2

10
nr2A: �94�

Formally, the new term in Eq. (93) could be interpreted as a source of antisymmetry at the
macroscopic level associated with the mean hydrodynamic force on the particles. Clearly, this
lack of uniqueness is a matter of interpretation and does not a�ect the physical content of the
equation. Ultimately, a choice among the various possible forms must rest on matters of
convenience and physical interpretation. It is worth noting that, in the case of spheres in
Stokes ¯ow all subject to the same force (e.g., gravity), A has to equal the applied force and is
therefore a constant. In this case there would be no di�erence between the options described.

7. The trace of the mixture stress

Another route to the de®nition of a mixture pressure in a disperse two-phase ¯ow might be
to follow a standard procedure in Continuum Mechanics and use the de®nition

~pm � ÿ
1

3
Tr SSST: �95�

This prescription su�ers, however, from several shortcomings. In the ®rst place, since only r �
SSST has a physical signi®cance, rather than SSST itself, the physics would remain una�ected by
the addition to SSST of any arbitrary divergenceless, but not traceless, tensor, while the de®nition
(95) would not. The tensor (69) used before is an example. Secondly, in the case of a single-
phase compressible ¯uid, the de®nition (95) leads to the introduction of a `mechanical' pressure
di�erent from the true thermodynamic pressure, the di�erence being associated with the
volume viscosity of the ¯uid. In the case of the two-phase mixture considered here, while the
mixture as a whole is incompressible, the individual phases are not in the sense that their
volume fractions generally change in time and space. The quantity de®ned by Eq. (95) would
therefore also contain irreversible contributions due to interphase slip that one would be
reluctant to consider as parts of a properly de®ned pressure. An example is shown in Eq. (109).
Finally, the de®nition (95) may be unsatisfactory on intuitive grounds: one would expect that
the pressure in the mixture would in some way be related to the continuous-phase pressure, for
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which one has a strong physical intuition. The de®nition (21) shows however that SSST also
contains a contribution from the internal stresses in the particles, the physical relevance of
which for the average behavior of the suspension is less clear.
These are general comments. To better appreciate them it is interesting to look at the speci®c

form taken by Eq. (95) when applied to the stress SSST as de®ned in Eq. (21):

ÿ1
3

Tr SSST � ÿ1
3
bChTr sssCi ÿ 1

3
Tr
ÿ
bDL�sssC �

�ÿ 1

3
Tr SSSa, �96�

where, from the expansion (7)

Tr
ÿ
bDL

� � nTjj � @k
ÿ
nSkjj

�� @ l@kÿnRlkjj

�� � � � : �97�

The transformation property of this quantity under a gauge transformation is readily obtained
by using the previous results (36), (46), (55) and (63):

ÿ1
3

Tr SSST � ÿ1
3

Tr ÃSSST ÿ
�
bC �

�
1� a2

18
r2

�
nv

�
cÿ 14

45
a2v�rn� � �rc�

ÿ a4v

105
�rrn�:�rrc�: �98�

It is evident that this is not the proper transformation of a physical quantity to be identi®ed
with a pressure.

8. Examples

To illustrate the results given in the previous sections it is useful to see their consequences in
some speci®c examples. We consider the case of spheres in potential ¯ow and at vanishing
Reynolds number, for both of which general exact solutions of the ¯ow at the particle level can
be written down. These expressions require a knowledge of the `incident' microscopic ¯ow
(pi,ui) in the neighborhood of each particle, which is of course only possible by numerical
means. General expressions in terms of these ®elds are given in Appendix C. As explained in
Appendix D, closed-form expressions can be obtained in the dilute limit with O�bD� accuracy,
and it is these expressions that we give here. In presenting these results it is convenient to
assume c � cC so that body-force e�ects on continuous-phase quantities can be disregarded.

8.1. Potential ¯ow

For potential ¯ow problems, the boundary conditions to be applied to the averaged
equations only involve the normal component of the velocity. Unless additional boundary
conditions are formulated, it is therefore necessary to truncate the equations so as to avoid the
appearance of spatial derivatives of velocities and pressure higher than the ®rst. We thus give
expressions limited to these terms. Higher order terms are shown in Appendix C.
The quantity pe de®ned in Eq. (74) is found to be
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pe � hpCi ÿ 1

4
rC�wÿ humi� � �wÿ um�, �99�

where

um � bCuC � bDhuDi, �100�
is the mean volumetric ¯ux (that, to the present order, can be equated to the continuous-phase
average velocity huCi). Upon keeping only ®rst-order spatial derivatives, with Eq. (99), the total
mixture pressure pm de®ned in Eq. (73) becomes

pm � hpCi ÿ 1

4
rCbD

�� Åw ÿ um� � � Åw ÿ um� ÿ Tr MD

�
, �101�

where

MD � Åw Åw ÿ Åw Åw , �102�
is the Reynolds stress of the particle velocity ®eld. The result (101), with MD � 0, has been
suggested by several authors (Ishii, 1975; Drew, 1983; Biesheuvel and van Wijngaarden, 1984;
Prosperetti and Jones, 1984, and others) not all of whom, however, realized its limited validity
to ®rst order in the volume fraction and ®rst order in the ratio of the micro- to the macroscale
a/L. The physical relevance of the quantity pm as found here is highlighted by the result of
Zhang and Prosperetti (1994b) according to which, on average, bubbles immersed in the ¯ow
considered here would respond to the ¯uctuations of pm rather than those of hpCi.
To the same accuracy we ®nd

T0�pCI� � ÿ 3

20
rC

�� Åw ÿ um� � � Åw ÿ um� ÿ Tr MD

�
I

� 9

20
rC

�� Åw ÿ um�� Åw ÿ um� ÿMD

�
, �103�

while the contributions of S and R give derivatives of higher order and can therefore be
disregarded. The hydrodynamic particle force A contains contributions from `virtual
buoyancy', added mass, lift, and particle Reynolds stress (Zhang and Prosperetti, 1994a):

A � ÿvrpm � 1

2
rC

�
@um

@t
� um � rum ÿ @ Åw

@t
ÿ Åw � r Åw � 1

bD

r � ÿbDMD

��

�1
2
rC�r � um� � � Åw ÿ um�: �104�

Here L reduces to T and thus

ÿ1
3

Tr
ÿ
bDL�sssC �

� � hpCi
�
1� a2

18
r2

�
�nv�: �105�

Furthermore
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ÿ1
3

Tr SSST � hpCi
�
1ÿ 2

45
a2r2�nv�

�
ÿ 1

3
Tr SSSa, �106�

which is remarkably di�erent from Eq. (101).

8.2. Stokes ¯ow

As a further example, consider the case of spherical rigid particles at negligibly small
Reynolds number.4 To ®rst order in bD, as shown in Appendix D, one may identify the
average of the particle-level continuous-phase pressure with hpCi and therefore

pm � bChpCi �
�
1� a2

10
r2

�
�nvhpCi�, �107�

or, if only ®rst-order derivatives of the pressure are allowed in the ®nal form of the momentum
equation as before,

pm � bChpCi � hpCi
�
1� a2

10
r2

�
�nv� � hpCi: �108�

In this case, therefore, the mixture pressure coincides with the continuous-phase pressure.
We can now allow for second-order derivatives of the velocity in the averaged equations.

Thus, the trace of the stress becomes

ÿ1
3

Tr SSST � hpCi
�
1ÿ 2

45
a2r2�nv�

�
� 1

4
mCr �

�
nv�um ÿ Åw ��ÿ 1

3
Tr SSSa: �109�

The second term is a contribution to the isotropic part of the stress wherever the ¯ux of
particles relative to the continuous phase has net sinks or sources. The presence of such
velocity-dependent terms illustrates the previous statement about the di�erence between
`mechanical' pressure and mixture pressure.
Expressions for the other quantities arising in the analysis of Section 5 are also readily

available for this case:

A � 6pmCa

�
ÿ uD � a2

6
r2um

�
, �110�

ts � 5vmCEm, �111�

@k
ÿ
nss

kji

� � 3

10
vmC�nED � Er�, �112�

where we have de®ned

4 Of course, the smallness of the particle Reynolds number does not imply the smallness of the mixture Reynolds
number.
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Em � 1

2

�
rum � �rum�T

�
, �113�

ED � 1

2

�
ruD � �ruD�T

�
ÿ 1

3
�r � uD�I, �114�

Er � 1

2
�uDrn� rnuD � ÿ 1

3
�uD � rn�I, �115�

in which

uD � Åw ÿ um, �116�
is the `slip' velocity. With these expressions, and recalling that, for a viscous incompressible
¯uid, one has the exact result (Zhang and Prosperetti, 1997)

bChsssCi � ÿbChpCi � 2mCEm, �117�
we ®nd

S �
�
1� 5

2
nv

�
mCEm � 6

5
nvmCED � 3

10
vmCEr: �118�

The ®rst term will be recognized as the correct Einstein e�ective viscosity of a dilute uniform
suspension. The other terms vanish when the slip velocity vanishes, as often happens in a
uniform suspension of density-matched spheres.
The vector R characterizing the antisymmetric part of the stress is

R � 3vmCn

�
1

2
r � um ÿ ÅOOO

�
� 3

2
vmCr �

�
n�wÿ um��, �119�

where ÅOOO is the mean particle angular velocity, and will vanish in the absence of external
couples. Finally, the isotropic part of the viscous stress is given by

qm � ÿ 3

10
nvmCr � uD � 1

5
vmCr � �nuD�, �120�

and, as anticipated in Section 7, would be non-zero in the presence of a non-zero slip velocity.

9. A formulation of the momentum equations

The momentum equations in the form (28) and (29) are attractive in terms of their manifest
symmetry and satisfaction of the action±reaction principle. Their usefulness is somewhat
limited, however, by the fact that they explicitly involve the stress inside the particles.
While it is trivially true that the particles in¯uence the motion of the continuous phase and,

at a fundamental level, they do so through the stress ®eld at their surface, the point we are
discussing here is di�erent. Consider for examples two suspensions of identical metal spheres.
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Due to the fabrication process, the spheres in the ®rst suspension have some residual stresses,
while those in the second one do not. In the same microscopic ¯ow ®eld, the precise
deformation of the pre-stressed spheres will be di�erent from that of the other ones, and
therefore the microscopic ¯ow ®eld will also be a�ected di�erently. Yet it would be di�cult to
argue that a practically useful description of the ¯ow on the basis of averaged equations
should be able to distinguish between the two situations. It would seem that, whenever it
makes sense to approximate the particle behavior as rigid, useful averaged equations should
not require further detailed information about the particle structure.
It is therefore interesting to examine the possibility of ®nding a formulation di�erent from

(28) and (29) Ð applicable to the case of particles su�ciently sti� to be modeled as rigid Ð
that does not involve the particles' internal degrees of freedom. Such a formulation would also
be useful for the purpose of closing averaged equations models as the necessity to account for
the particle internal structure would further complicate an already very di�cult task. If, for
example, a closure is sought on the basis of direct numerical simulations, one would be forced
to solve for the particle internal stresses in addition to the ¯uid motion with a very great and
undesirable increase in computational e�ort.
For the continuous phase a formulation free of reference to the particle internal structure

has already been presented in Eq. (13). However, there is much to be gained by reconsidering
that equation in the light of the new de®nition of the mixture pressure given in Section 5 and
of the covariance properties discussed at the end of that section. Let us de®ne the continuous-
phase viscous contribution to the mixture stress SSSC by

SSSC � ÿqmI� S� A: �121�
By using Eq. (80) to express the terms in the right-hand side of Eq. (13) we therefore have

IC � r � � ÿ pmI� SSSC� ÿ bD

v
A� a2

10

��rn� � �r �A� � nr�r �A�
�
ÿ bCrcC: �122�

By using the transformation properties of pm and A, i.e., pm � p̂m ÿ c, A � Â� vrc, and
recalling that SSSC is invariant, it is immediately seen that the quantity

f � 1

v
Aÿ r � � ÿ pmI� SSSC�, �123�

is also gauge invariant. This fact implies that a closure for f cannot include a term
proportional to rpm which, as shown in Marchioro et al. (1999b), is a very useful observation.
It is interesting to rewrite this relation as

A � vr � � ÿ pmI� SSSC� � vf, �124�
which shows that the average hydrodynamic force per particle A is the result of two e�ects.
The ®rst one is the ®rst term in the right-hand side, which would vanish for a uniform system;
it evidently represents the force acting on the particles due to the structure of the ¯ow over the
macroscopic scale. This term is therefore responsible for the so-called `virtual buoyancy' force
and its generalization to the viscous component of the stress. The second term must therefore
be due to the forces acting on the particle phase due to the local ¯ow in their surroundings,
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such as added mass, lift, drag, and others. This decomposition of the force on the disperse
phase, which is substantiated by the explicit dilute results of Section 8, was postulated earlier
on intuitive grounds (Prosperetti and Jones, 1984), but is here rigorously deduced from the
averaged equations.5

In terms of the continuous-phase `Reynolds stress'

MC � huCihuCi ÿ huCuCi, �125�
the momentum equation (122) may be rewritten as

rCbC

�
@huCi
@t
� huCi � rhuCi

�
� ÿbCr � � ÿ pmI� SSSC�bDf

�rDr �
ÿ
bCMD

�ÿ bCrcC �
a2

10

��rn� � �r �A� � nr�r �A�
�
: �126�

We now turn to the disperse-phase momentum equation (16). Following the same procedure
outlined in the Appendix to Zhang and Prosperetti (1997), it can be readily shown that

ID ÿ r � SSSa � Iw �
ÿ
bD ÿ nv

�rcD, �127�
where

Iw � rD

�
@

@t
�nv Åw � � r � �nvww�

�
: �128�

We can therefore rewrite the particle momentum equation (16) as

Iw � nAÿ nvrcD: �129�
This form is evidently free of any reference to the particle internal stress. Alternatively, the
equation may be written as

rDnv

�
@ Åw

@t
� Åw � r Åw

�
� nvr � � ÿ pmI� SSSC� � nvf � rDr � �nvMD� ÿ nvrcD, �130�

with MD the particle Reynolds stress de®ned in Eq. (102). Eqs. (126) and (130) are remarkably
similar in their structure to the completely symmetric forms (28) and (29). There are two
di�erences however. The ®rst one is that the disperse-phase equation is expressed in terms of
nv rather than bD. This circumstance arises because Iw is the rate of change of the momentum
of all the particles the center of which is in the unit volume. In a non-uniform system, this
quantity is evidently di�erent from ID, the rate of change of the momentum of the particle
material contained in the unit volume. The second di�erence is the last term in Eq. (126) which
has no counterpart in the disperse-phase equation. This is due to the fact, proven in Section 3,

5 Note that, for the Stokes ¯ow example of Section 8, r � �ÿpmI � SSSC� � O�bD� and is, therefore, negligible in the
expression for A given in Eq. (110).
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that a perfectly symmetric form requires the introduction of the particle internal stress because,
in a symmetric treatment of the phases, it is necessary to include the particle internal stress in
the de®nition of the mixture stress. The slight loss of symmetry caused by the last term in Eq.
(126) seems to be a worth-while price to pay to avoid the introduction of SSSa in the averaged
equations.
It is interesting to consider the special case in which particle inertia is negligible. The

microscopic particle momentum equation (14) gives then r � sssD � rcD from which, according
to the de®nition (19) of SSSa, one can show that

r � SSSa � a2

10
vrcD

�r2n�: �131�

On the other hand, from Eq. (16), r � SSSa � bDrcD ÿ nA�sssC� and therefore, upon comparing,

A � vrcD, �132�
which simply states that the total hydrodynamic force on the particles is balanced by the body
force. Upon substituting into the de®nition (27) of F we, therefore, ®nd the interesting result

F � bDf: �133�
In this case, from Eq. (132), we also see that r �A � 0, r �A � 0, and therefore the two
equations (126) and (130) acquire the desired form, with f identi®able as the true interphase
force per unit particle volume. In this case the particle internal dynamics disappears completely
from the formulation. Such a simple result would not hold when particle inertia is not
negligible.

10. Summary and conclusions

The action of a conservative body force on an incompressible ¯uid can be equivalently
considered as the e�ect of a modi®ed pressure rede®ned to include the potential of the body
force. By requiring that this fundamental property be satis®ed by the mixture pressure in a
disperse two-phase ¯ow, we have been led to a unique, well-de®ned prescription for this
quantity given in Eq. (73). While this result is similar to others proposed in the past, it di�ers
in detail and also puts the earlier, often heuristic, derivations on a ®rmer ground. Furthermore
we have also shown that, provided the particles can be modelled as rigid bodies, a
consideration of the covariance properties of the averaged momentum equations for the
disperse and continuous phases under the transformation of the pressure leads to a formulation
that does not contain any reference to the internal stress of the particles, Eqs. (126) and (130).
The equivalence of this formulation with the more common ones obtained by a direct
averaging of the microscopic equations has been explicitly proven in Sections 3 and 9. At no
point in the derivation was it necessary to assume that the continuous phase was Newtonian.
Although only a disperse phase consisting of equal spheres was explicitly considered, a
generalization to unequal spheres or particles of arbitrary shape does not present great
di�culties.
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The results of the analysis have been illustrated in the case of dilute suspensions subject to
potential or Stokes ¯ow in Section 8. When substituted into the general expressions for the
stress and interphase force given in Eqs. (76)±(80), these results constitute an exact, closed-
form expression for the averaged momentum equations in these conditions.
Another interesting consequence of the study is the explicit identi®cation of the interphase

force, and its natural decomposition into large-scale (including, e.g., virtual buoyancy) and
small-scale (including, e.g., added mass) components. Since the small-scale component has been
shown to be invariant under a transformation of the pressure, it follows that pressure gradients
are not necessary for its closure.
In addition to a general understanding of the issues surrounding the proper formulation of

the averaged momentum equations, the chief purpose of the paper is to put into a sharper
focus the problem of closing the equations. The mixture pressure is a primary variable and
does not need to be closed, while everything else does. Hence, it is important to separate the
pressure from the rest of the stress before attempting a closure. Furthermore, if a closure is
based on the results of a direct numerical simulation, the present formulation shows that it is
unnecessary to solve for the internal particle stress, which is useful in limiting the necessary
computational e�ort. An application of the present analysis to the closure problem of spatially
non-uniform suspensions is given in Marchioro et al. (1999b).
The study has relied on the ideas and techniques of ensemble averaging that we have

described in a series of earlier papers (Zhang and Prosperetti, 1994a, 1994b, 1997; Prosperetti,
1998). The chief elements of the method are summarized in the Appendices.
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Appendix A. Averaging relations

The phase averaging method used in this paper has been described in detail in a series of
earlier studies (Zhang and Prosperetti, 1994a, 1994b, 1997; Prosperetti, 1998). It will be
su�cient here to recall some de®nitions and results that are proven in the cited references. We
start by considering the case of particles in inviscid potential ¯ow. Conceptually, expressions
for ®nite Reynolds number are immediate generalizations that will be described later.
The potential ¯ow induced by N equal homogeneous spherical particles embedded in a

prescribed deterministic ¯ow is only a function of the particle centers' instantaneous positions,
ya, a � 1,2, . . . ,N, and center-of-mass velocities wa. The set of vectors fya,wag constitutes a
con®guration CN (or, more simply N ) of the system under consideration. Many such systems,
each one containing N particles in di�erent con®gurations, constitute the statistical ensemble
that we study. The probability density with which con®gurations occur in the ensemble is
denoted by P(N ) and therefore
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P�N�dCN � P
ÿ
y1,w1, . . . ,yN,wN

�
d3y1d3w1 � � � d3yNd3wN, �A1�

represents the fraction of members of the ensemble such that the center of sphere 1 is in the
elemental volume d3y1 around y1, etc. In view of the identity of the particles we use the
normalization (see, e.g., Batchelor, 1972)�

dCNP�N� � N!: �A2�

Let wC,D�x;N � be the characteristic function for the continuous (subscript C) or disperse
(subscript D) phase. For the present case of equal spheres of radius a an explicit representation
of wD is

wD�x;N� �
XN
a�1

H
ÿ
aÿ jxÿ yaj�, �A3�

where H is Heaviside's distribution, and wC � 1ÿ wD. The phase volume fractions bC,D are
given by

bC,D�x� �
1

N!

�
dCNP�N�wC,D�x;N�, �A4�

while the particle number density n is given by

n�x� � 1

N!

�
dCNP�N�

XN
a�1

d
ÿ
xÿ ya�

� 1

�Nÿ 1�!
�

d3w1

�
d3y�2�

�
d3y�3� � � �

�
d3y�N�P

ÿ
x,y�2�, . . . ,y�N�

�
, �A5�

where the second step follows from the identity of the particles.
If the averaged quantities vary slowly over distances comparable to the particle radius, by

carrying out a Taylor series expansion in the integrand of (A4), one readily proves the relation
(12) between bD and nv given in the text.
The phase average of any ®eld fC,D pertaining to either phase is given by

bC,D�x�hfC,Di�x� �
1

N!

�
dCNP�N�wC,D�x;N�fC,D�x;N�, �A6�

where fC,D�x;N � denotes the exact (microscopic) value of f in the appropriate phase at a point
x when the spheres are in the con®guration N. Note that, in general, each con®guration
evolves in time, although we do not indicate time dependence explicitly.
In the following, we also will need conditional probability densities. The one-particle

probability distribution P�y,w� is de®ned by

P�1� � P�y,w� � 1

�Nÿ 1�!
�

dCNÿ1P�N�, �A7�
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where the integration is over the degrees of freedom of particles 2,3, . . . ,N. With this quantity,
we can de®ne the conditional probability P�Nÿ 1j1� by P�N � � P�1�P�Nÿ 1j1� and the one-
particle conditional averages by

b1ChfCi1�x,tjy,w� �
1

�Nÿ 1�!
�

dCNÿ1wCfCP�Nÿ 1j1�, �A8�

where b1C, the conditional volume fraction, is given by this same relation with fC � 1.
For the disperse phase, in addition to the phase average hfDi, we shall make use of a particle

average de®ned as follows. Let ga be a quantity pertaining to the a-th particle as a whole, such
as the velocity of the center of mass, the angular velocity, etc. Then we de®ne

n�x� �g�x� � 1

N!

�
dCNP�N�

"XN
a�1

d
ÿ
xÿ ya

�
ga�N�

#
�A9�

� 1

�Nÿ 1�!
�

d3w

�
dCNÿ1P�x,w,Nÿ 1�g1�x,w,Nÿ 1�, �A10�

where the notation ga�N � indicates that the value of g for particle a is, in general, dependent
on the position of all the particles and the expression in the second line is a consequence of the
identity of the particles. Keeping in mind the explicit expression (A3) of wD, we note an
analogy between the de®nitions of bD, n, and hfDi, �g .
Upon assuming the ¯uid to be incompressible, averaging of the microscopic equation of

continuity leads to

@bC

@t
� r � ÿbChuCi

� � 0, �A11�

and, similarly,

@bD

@t
� r � ÿbDhuDi

� � 0: �A12�

Since the matrix±sphere interface has zero measure, bC � bD � 1 and we thus ®nd adding
(A11) and (A12)

r � um � 0, �A13�
where the mean volume ¯ux um is de®ned in Eq. (100) or, from Eq. (A6),

um � 1

N!

�
dCNP�N��wC�x;N�uC�x;N� � wD�x;N�uD�x;N�

�
: �A14�

Expressing the conservation of particle number requires the particle average Åw of the center-of-
mass velocity w de®ned according to Eq. (A9):

@n

@t
� r � �n Åw � � 0: �A15�
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In addition to potential ¯ow, another situation in which the exact microscopic ¯ow is only a
function of the particle variables is Stokes ¯ow, in which case, however, the probability density
does not depend on the particle velocities. The equations appropriate for this situation can be
obtained from those given before simply by omitting the integrations over particle velocities.
As a consequence, it is immediate to deduce from Eqs. (A5) and (A7) that P�1� � n.
For the general case of ®nite Reynolds numbers (as well as for inviscid, but not necessarily

irrotational ¯ows) one must consider, in addition to the particle degrees of freedom, the
degrees of freedom of the continuous phase. If Q denotes collectively these degrees of freedom,
we would now have P�N � � P�ya,wa,Q�, but all the relations given before would be applicable
provided all the integrals are understood to include an integration over Q.
For brevity, in the paper we have only indicated explicitly the integration over the spatial

variables, leaving the integrations over velocities and continuous-phase degrees of freedom
implied. Thus, the equations in the form given are literally correct only in the case of Stokes
¯ow. For example, if the integration over the velocity of particle 1 were indicated, Eq. (5)
would become

bChr � sssCi � r �
ÿ
bChsssCi

�ÿ �
jxÿyj�a

dSy

�
d3wP�y,w�hsssCi1�xjy,w� � ny: �A16�

Appendix B. The small-particle approximation

We derive here the expansions (6) and (19) that constitute the small-particle approximation.
For the ®rst result, the starting point is the relation (5) between the average of the

divergence and the divergence of the average. To approximate the integral term in this relation
we observe that, in the bulk of the suspension, hsssCi1�xjy� varies much more rapidly with
respect to the variable x than with respect to the particle center y. Let then r � xÿ y be a
vector with length a directed from the particle center y to the point x on the particle surface
and de®ne, omitting non-essential variables,

F�r,y� � P�y�hsssCi1�xjy�: �B1�
In view of the slowness of the dependence on y, we expand F in a Taylor series centered at x:

F�r,y� � F�r,x� ÿ r � ry

�
F�r,y� ÿ r � ry

�
F�r,y� ÿ r � ry

ÿ
F�r,y� � � � � ��	, �B2�

with all the derivatives taken with respect to the variable y and then evaluated at y = x. Upon
substituting this relation into (5), we have a result of the form (6) with

A�sssC � �
�
jrj�a

dShsssCi1�x� rjx� � n, �B3�

T�sssC � � a

�
jrj�a

dSn
�hsssCi1�x� rjx� � n�, �B4�
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S�sssC � � ÿ1
2
a2
�
jrj�a

dSnn
�hsssCi1�x� rjx� � n�, �B5�

R�sssC � � 1

6
a3
�
jrj�a

dSnnn
�hsssCi1�x� rjx� � n�, �B6�

and so on. It can readily be shown, by using the de®nitions (A8) and (A9), that these
expressions can equivalently be written as in Eqs. (8)±(11).
To prove Eq. (19) we proceed similarly. From the de®nition of conditional and

unconditional phase averages, using the identity of the particles, it is easy to show that

bDhr � sssDi �
�
jxÿyjRa

d3yn�y�hr � sssDi1�xjy�, �B7�

where the integral is extended to all the particle centers such that x is inside the particle phase.
As before, we observe that the integrand varies slowly with respect to the variable y so that we
can carry out a Taylor series expansion similar to (B2) to ®nd

bDhr � sssDi � n�x�
�
jrjRa

d3rhrr � sssDi1�x� rjx� � r � SSSa, �B8�

where rr denotes the gradient with respect to the distance from the particle center and SSSa is
de®ned in Eq. (19). The ®rst term in the right-hand side of Eq. (B8) can be further
manipulated by interchanging the conditional averaging and the integration over the particle
volume and then applying the divergence theorem to write it as an integral over the particle
surface. Here the exact, microscopic condition of normal stress continuity applies, sssC � n �
sssD � n, and therefore the integral in Eq. (B8) is the same as the one as (B3) de®ning A�sssC�.
With this remark, (15) follows.

Appendix C. Relations for potential ¯ow and Stokes ¯ow

We derive here the results given in Section 8 taking advantage of the fact that, for potential
and Stokes ¯ow, general solutions are available for the ¯ow ®elds. Here we ®rst show the
general expressions, that must be evaluated numerically. Their dilute-limit form is discussed
further in Appendix D and shown in Section 8.
We write �pi,ui� to denote the `incident' microscopic ®eld in the neighborhood of the particle

(de®ned, more precisely, as the part of the ¯ow ®elds regular at the particle centers), and (p,u)
to denote the complete ¯ow ®elds near the particles.

C.1. Potential ¯ow
Consider a spherical particle instantaneously centered at y and translating with velocity w in

a general (microscopic) ¯ow ®eld. Let the microscopic `incident' ¯ow (ui,pi) in the
neighborhood of the particle have a potential F so that

ui � rFi, �C1�
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and write Fi as

Fi �
X1
l�0

1

l!
�xÿ y��l�r�l�Fi�y�, �C2�

where the notation is such that

�xÿ y��l�r�l�Fi�y� � ��xÿ y�i�xÿ y�j� � � �xÿ y�k@ i@ j � � � @k
�
Fi, �C3�

with all derivatives evaluated at the particle center. The particle modi®es the incident ¯ow to a
disturbed ¯ow (u,p) with potential

u � rF, �C4�
where, in order to satisfy the kinematic boundary condition at the particle surface (Zhang and
Prosperetti, 1994a),

F � ÿ1
2

a3

jxÿ yj3w � �xÿ y� �
X1
l�0

1

l!

"
1� l

l� 1

�
a

jxÿ yj
�2l�1

#
�xÿ y��l�r�l�Fi�y�: �C5�

To calculate the pressure ®eld we need to take time derivatives of the potentials at a ®xed
position x. For this purpose we need to remember that F and Fi depend on time both
explicitly, through w and the spatial derivatives of Fi, and implicitly through y, so that�

@F
@t

�
x

�
�
@F
@t

�
y

ÿw � rF, �C6�

with a similar expression for �@Fi=@t�x. From Eqs. (C1) and (C14) one ®nds, at the particle
surface,

pi

rC

� C�t� ÿ @F
i

@t
ÿ 1

2
ui � ui, �C7�

p

rC

� pi

rC

� 9

8

�
n � �wÿ ui��2ÿ5

8
�wÿ ui� � �wÿ ui� � 1

2
an �

�
Çw ÿ @ui

@t

�
ÿ 1

3
a2nn:

@ei

@t
�

a
��Iÿ nn� � �wÿ ui��n:ei � 9

32
a2
��Iÿ nn� � �wÿ ui�� � �nn:rrrF�

ÿ 1

18
a2
�
5�n � ei � n�2�4�n � ei� � �n � ei�

�
� � � � , �C8�

where

ei�xjN� � 1

2

�
rui � �rui�T

�
, �C9�
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is the rate-of-strain tensor of the incident ®eld evaluated at the particle center x when the
particles have the con®guration CN and the dots stand for terms involving higher order spatial
derivatives of ui. Here as elsewhere we omit the explicit indication of non-essential variables
such as time.
With this expression we ®nd

pe�xjN� � pi�xjN� ÿ 1

4
rC

�
wÿ ui�xjN�

�
�
�
wÿ ui�xjN�

�
ÿ 5

18
a2rCei�xjN�:ei�xjN�

� � � � , �C10�

The integral appearing in the de®nition (50) of T0�pCI� is
1

rC

�
jrj�a

dSr

�
nnÿ 1

3
I

�
pC � ÿ 3

20
v
ÿ
wÿ ui

0

� � ÿwÿ ui
0

�
I� 9

20
v
ÿ
wÿ ui

0

�ÿ
wÿ ui

0

�

ÿa2v
�
1

3

@

@t
ÿ 3

10
ui
0 � r �

19

30
w � r

�
ei
0 ÿ

5

21
va2ei

0 � ei
0 �

5

63
va2
ÿ
ei
0:e

i
0

�
I� � � � , �C11�

where, as before, the omitted terms involve higher order derivatives of ui and the subscript
zero indicates values at the particle center. It is clear that this quantity is independent of the
continuous-phase pressure as expected on the basis of the discussion in Section 5. The integral
in the de®nition (58) of S0�pCI� is

1

rC

�
jrj�a

dS

�
ninjnk ÿ 1

5
dijklnl

�
pC � 1

5
vdijkl

ÿ
ui
0 ÿ w

� � r�ui
0l�

1

14
vdijklmn

ÿ
ui
0l ÿ wl

�
ei
0mn

� 1

10
djkv

�
Çw ÿ @ui

0

@t
ÿ ui

0 � rui
0

�
i
ÿ1
5
vdjk

ÿ
@ ip

i
�
0, �C12�

where dijkl and dijklmn are the completely symmetric isotropic tensors of ranks 4 and 6. Again,
this quantity is seen to be independent of pC. For the speci®cation of pm we also need the
following result:

1

rC

�
jrj�a

dSrnpC � 1

2
v

�
Çw ÿ @ui

0

@t
ÿ ui

0 � rui
0

�
ÿ v

ÿ
rpi

�
0: �C13�

C.2. Stokes ¯ow
According to Lamb's general solution of the Stokes equations (Lamb, 1932), the incident

¯ow ®elds in the neighborhood of a particle centered at the origin may be written as

pi�x� � mC

X1
n�0

pn�x�, �C14�
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ui�x� �
X1
n�0

1

�n� 1��2n� 3�
�
1

2
�n� 3�r2rpn ÿ nxpn

�
�
X1
n�0

�rfn � r � �xwn�
�
, �C15�

where r � jxj and the pn, fn, and wn are solid harmonics of order n. The introduction into this
¯ow of a particle centered at the origin and having a translational velocity w and an angular
velocity OOO causes a disturbance given by

pd � mC

X1
n�1

pÿnÿ1, �C16�

ud �
X1
n�1

1

n�2nÿ 1�
�
ÿ 1

2
�nÿ 2�r2rpÿnÿ1 � �n� 1�xpÿnÿ1

�

�
X1
n�1

�rfÿnÿ1 �r � �xwÿnÿ1��, �C17�

where

pÿnÿ1 � ÿ1
2

2nÿ 1

n� 1
n

�
pn � 2

a2
�2n� 1�fn

��
a
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�2n�1
�3
2

w � x 1

r2
dn1, �C18�

fÿnÿ1 � ÿ
a2

4

n

n� 1

�
2n� 1

2n� 3
pn � 2

a2
�2nÿ 1�fn

��
a

r

�2n�1
�a

2

4
w � x 1

r2
dn1, �C19�

wÿnÿ1 � ÿ
�
a

r

�2n�1
wn � OOO � xa

2

r2
dn1: �C20�

With these relations it is easy to prove that, at the particle surface,

pd � pi � 3

2a
mCw � nÿ mC

X1
n�0

2n� 1

n� 1

�
1

2
�nÿ 2�pn � n

a2
�2nÿ 1�fn

�
, �C21�

sssC � n � ÿ
ÿ
pd � pi

�
n� mC

h
r
ÿ
ud � ui

�
�
ÿ
r
ÿ
ud � ui

��T
i
� n

� ÿ3mC

2a
wÿ 3mCOOO� n� mC

X1
n�0

2n� 1

n� 1

�
1

2
arpn ÿ npn

�
� mC

a

X1
nÿ1

4n2 ÿ 1

n� 1
rfn

� mC

X1
n�1
�2n� 1�rwn � n, �C22�

where the pn, fn, and wn are evaluated at the particle surface r � a.
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The required surface integrals can be evaluated from these relations with results expressed in
terms of the functions pn, fn, wn evaluated at the particle center. However, these ®elds can
readily be related to the incident ®eld. For example, one ®ndsÿrf1

�
0
� ui

0,
ÿ
@ j@kf2

�
0
� 1

2

�
@ ju

i
k � @kui

j

�
0
, �C23�

and so on.
Using these results, one ®nds

pe�xjN� � pi�xjN�, �C24�
where the incident pressure pi�xjN � is evaluated at the particle center x, and

a

�
jrj�a

dSr

�
nnÿ 1

3
I

�
pC�x� rjN� � ÿv

h
rui

0 �
ÿrui

0

�T
i
, �C25�

which, again, is independent of the pressure as expected. Similarly,

Skji � 3

4
vmdjk

�
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0i

�� 1
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e
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Appendix D. The dilute limit

The results of Appendix C lead directly to expressions for the average ®elds that have an
O�bD� accuracy. The argument is the following.
As shown by Eqs. (B3)±(B6), in order to calculate A�sssC� and bDL�sssC� to ®rst order in the

disperse-phase volume fraction, it is evidently su�cient to know hsssCi1 correct to zero order in
bD, i.e., as if no other particle were present. In other words, we are led to solve the problem

r � huCi1 � 0, �D1�

rC

�
@

@t
huCi1 � huCi1 � rhuCi1

�
� ÿrhpCi1 � mCr2huCi1 � rCg: �D2�

The microscopic boundary condition on the normal velocity component at a point x on the
surface of particle 1 is uC�y1 � rjN � � n1 � w1 � n1, where x � y1 � r with r � an1. In order to
transform this condition into one concerning huCi1, we take the conditional average according
to the de®nition (A8) noting that, since the condition is to be applied on the exterior surface of
the particle, b1D � 1, wC � 1:
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n1 � huCi1
ÿ
xjy1,w1

�
� 1

�Nÿ 1�!
�

dCNÿ1n1 � uCP
ÿ
Nÿ 1jy1,w1

�

� 1

�Nÿ 1�!
�

dCNÿ1n1 � w1P
ÿ
Nÿ 1jy1,w1

�
: �D3�

In the case of Stokes ¯ow velocities are not integration variables and we can set P�Nÿ 1j1� �
P�N �=n to ®nd, according to the de®nition of particle average (A10),

n � huCi1 � n � Åw : �D4�
For potential ¯ow, or at ®nite Reynolds numbers, w1 is an independent variable in the phase
space and is not a�ected by the integration. The remaining expression can then be evaluated to
1 given the normalization of P�Nÿ 1j1�. Thus, in this case (omitting the superscript 1), the
boundary condition is

n � huCi1�xjy,w� � n � w: �D5�
As the distance from the center of the particle, measured on the scale of the particle radius,
gets large, the e�ect of the particle decreases and therefore the proper boundary condition is

huCi1�xjy,w�4huCi�x� as jxÿ yj41 �D6�
As posed in (D1), (D2), (D6) and (D4) or (D5), at this level of accuracy the problem to be
solved is that of a single sphere in a prescribed ¯ow. The solutions for potential and Stokes
¯ow given in Appendix C can readily be adapted to this case simply by observing that, in view
of the boundary condition (D6), the incident ®elds are to be interpreted as the unconditionally
averaged ®elds (huCi,hpCi). Since um ÿ huCi � O�bD�, at the same level of accuracy, we can also
write um in place of huCi.
Note also that the previous argument implies that the particle averages of the incident ®elds

evaluated at the particle centers can, to O�bD�, be identi®ed with the unconditional averages of
the continuous-phase ®elds. This fact is sometimes called the Foldy approximation (see, e.g.,
Ca¯isch et al., 1985) with reference to a study by Foldy (1945) in which it ®rst appeared; See
also Hinch (1977).
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